Course Outline

Institut Pertanian Bogor - ACICIS' Agriculture Semester Program

Unit name	Basic Food Biochemistry (ITP240)		
Department/	Food Science and Technology		
Faculty	Faculty of Agriculture Technology		
Course credit (SKS)	3 (3-0)		
Offered in	Odd semester (September-January), second year subject		
Pre-requisite	-		
Course Coordinator	Maggy T. Suhartono and Puspo Giriwono		
Language	Indonesian English 🗹 Both		

Course description

This course introduces the basic principles of biochemistry and molecular biology in relation with food science and technology, post harvest physiology and food biotechnology.

Learning outcomes

By the end of this course, students are expected to have learned fundamental understandings of biochemistry and molecular biology, which are important to comprehend food characteristics, food enzymology, food bioenergetics as well as food biotechnology. Students will learn particularly:

- identification of cell compartments and macromolecules in foods as well as their roles in biochemical process,
- biochemical process in ATP generating and role of foods,
- basic genetics in relation with food biotechnology.

According to designed core competencies related to biochemistry and human nutrition, students will learn in detail the basic concept of human nutrition and the relationship between the consumption of foods and nutritional status and health; and learn briefly changes of biological function of food components due to food processing and storage.

Indicative assessment

- Group assignments (20%)
- Mid-exam (40%)
- Final exam (40%)

Contact Hours

3 hours lecture and discussion per week for 14 weeks; no laboratory work

Readings

- Nelson, D.L. dan Cox, M.M. 2004. Lehninger Principles of Biochemistry 4th edition. W.H. Freeman, New York.
- Horton, H.R., Moran, L.A., Ochs, R.S., Rawn, J.D., dan Scrimgeour, K.G. 2002. Principles of Biochemistry 3rd ed., Pearson Education International—Prentice Hall. New Jersey.

Materials (subject to change)

Week	Topic	Sub-Topics
1	Course Introduction	Course rulesWhat is cognitive levels?Specific learning outcomes and cognitive levels for each topic
	Cell	 Prokaryotic cells Eukaryotic cells Cell compartment and their characteristics
2	Water and Biomolecule	 Polarity and hydrogen bond Non covalent interactions in biomolecule Functional groups in biomolecule Building blocks of biomolecule
3	Amino Acid and Proteins	 Structure and classification of amino acid Primary, secondary, tertiary and quartenary structure Protein in action; meat protein and hemoglobin
4, 5	Enzymology and Food Enzymes	 Definition and classification of enzyme Catalytic mechanism; chymotrypsin Enzyme activity and kinetics Michaelis-menten equation Enzymes in food Enzymes in food processing
6, 7	DNA, Protein Synthesis and Food Biotechnology	 Nucleic acid and its building block Replication, transcription and translation Gene technology Genetically modified food
8	Thermodynamic in Biochemical Reaction	 Basic terminologies Redox, free energy and relevant thermodynamic laws Case study and example
9	Metabolism of Macro- Molecules Glycolysis	 Digestion of macromolecules Catabolism and anabolism Steps and pathways of glycolysis Energy balance Downstream process Pyruvate dehydrogenase complex
10	TCA Cycle	 Precursor of tca cycle, fatty acid and protein degradation Step and pathway Energy balance
11	Electron Transport Chain	 Compounds in oxidative phosphorylation Electron transport chain complex Proton gradient and chemical osmotic theory Atp generating system
12, 13	Post Harvest and Post Mortem Physiology	 Important reactions in post harvest physiology Biochemical changes during post harvest Biochemical changes during post mortem Implication on quality of food
14	Biochemistry in Food System	Food systemCase: role of biochemistry in food safety issueChallenges in tropical region